skip to Main Content

  »  Publications

Authors

Barchetta I, Lubrano C, Cimini FA, Dule S, Passarella G, Dellanno A, Di Biasio A, Leonetti F, Silecchia G, Lenzi A, Cavallo MG.

Publication Year

2023

Abstract Note

Background and purpose: Chronic liver diseases are associated with increased bone fracture risk, mostly in end-stage disease and cirrhosis; besides, data in non-alcoholic fatty liver disease (NAFLD) are limited. Aim of this study was to investigate bone mineralization and microstructure in obese individuals with NAFLD in relation to the estimated liver fibrosis.

Methods: For this cross-sectional investigation, we analyzed data from 1872 obese individuals (44.6 ± 14.1 years, M/F: 389/1483; BMI: 38.3 ± 5.3 kg/m2) referring to the Endocrinology outpatient clinics of Sapienza University, Rome, Italy. Participants underwent clinical work-up, Dual-Energy X-ray Absorptiometry for assessing bone mineral density (BMD) and microarchitecture (trabecular bone score, TBS). Liver fibrosis was estimated by Fibrosis Score 4 (FIB-4). Serum parathyroid hormone (PTH), 25(OH) vitamin D, osteocalcin and IGF-1 levels were measured.

Results: Obese individuals with osteopenia/osteoporosis had greater FIB-4 than those with normal BMD (p < 0.001). FIB-4 progressively increased in presence of degraded bone microarchitecture (p < 0.001) and negatively correlated with the serum osteocalcin (p < 0.001) and IGF-1 (p < 0.001), which were both reduced in presence of osteopenia/osteoporosis. FIB-4 predicted IGF-1 reduction in multivariable regression models adjusted for confounders (β: - 0.18, p < 0.001). Higher FIB-4 predicted bone fragility with OR 3.8 (95%C.I:1.5-9.3); this association persisted significant after adjustment for sex, age, BMI, diabetes, smoking status and PTH at the multivariable logistic regression analysis (OR 1.91 (95%C.I:1.15-3.17), p < 0.01), with AUROC = 0.842 (95%C.I:0.795-0.890; p < 0.001). Conclusion: Our data indicate the presence of a tight relation between NAFLD-related liver fibrosis, lower bone mineral density and degraded microarchitecture in obese individuals, suggesting potential common pathways underlying liver and bone involvement in obesity and insulin resistance-associated disorders.

Journal

Hepatol Int

Volume

Pages

Tags

Back To Top